Errata: Advanced Calculus by Kim and Lee

Chapter 0 Preliminaries

Section 0.1.

(1) p.6: In Example 0.11, "which is a contraction" should be "which is a contradiction".

Section 0.3.

(1) p.13: In Line 2, " $A_1 \times A_2$ is onto" should be " $A_1 \times A_2$ is countable".

Section 0.4.

(1) p.15: In Exercise 0.43, "Then the following..." should be "Prove that the following...".

Section 0.5.

- (1) p.16: In Example 0.48, "such" should be "such that".
- (2) p.18: In Exercise 0.60, "iff" should be "if and only if".

Section 0.6.

- (1) p.20: In Problem 0,3, " $k_1+k_2\cdots+k_m$ " should be " $k_1+k_2+\cdots+k_m$ ".
- (2) p.22: In the end of Problem 0.14, ".(the period)" should be added.

Chapter 1 Sequences and Series

Section 1.1.

- (1) p.26: In Example 1.3, " $n \ge \mathbb{N}$ " should be " $n \ge N$ ".
- (2) p.26: In Example 1.7, " S_{2^n} " should be " a_{2^n} ".

Section 1.3.

- (1) p.30: In line 22, "...a strictly increasing sequence in \mathbb{N} " should be "...a sequence in \mathbb{N} such that $n_k < n_{k+1}$ for all $k \in \mathbb{N}$ ".
- (2) p.31: In the proof of Theorem 1.21, "closed and bounded intervals in \mathbb{R} " should be "closed and bounded intervals".

Section 1.4.

(1) p.32: In line 7, "ia" should be "is".

Section 1.8.

- (1) p.44: In line 2, " $\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{2^2} + \cdots$ " should be " $\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots$ ".
- (2) p.44: In line 7, " $\sum_{n=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{2^p} + \cdots$ " should be " $\sum_{n=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \cdots$ ".
- (3) p.44-47: In Examples 1.58, 1.69, Exercise 1.65, Corollaries 1.67, and 1.68, the numbers p, q, c should be rational, because n^p has not been defined for irrational p.
- (4) p.46: In the end of Exercise 1.66, ".(the period)" should be added.
- (5) p.46: The proof of Theorem 1.67 can be shorten by taking m = n, because $s_n \leq s_{2^n}$.
- (6) p.46: In the proof of Corollary 1.68, "Hence by Theorem 1.67 that" should be "Hence it follows from Theorem 1.67 that".
- (7) p.51: To solve Exercise 1.78, one may need a hint like "To prove the monotonicity of a function, you may need to apply the derivative test in Chapter 3 (Theorem 3.38)." Or it should go to the problem section of Chapter 4.

CHAPTER 2 LIMITS AND CONTINUITY

Section 2.1.

(1) p.59: In Example 2.6, " $|q_n - a| < 1/n$, and $|r_n - a| < 1/n$ " should be " $0 < |q_n - a| < 1/n$, and $0 < |r_n - a| < 1/n$ ".

(2) p.59, 60: In Theorems 2.5, 2.8, and 2.9, " L, L_1, L_2 " should be specified as "real numbers".

Section 2.4.

(1) p.69: In Theorem 2.39, "Let f is" should be "Let f be" and the open interval "(a,b)" should be the closed interval "[a,b]". The proof should be modified accordingly.

Section 2.5.

(1) p.74: In Problem 2.20 (ii), " t_2x_n " should be " t_2x_2 ".

Chapter 3 Differentiation

Section 3.2.

- (1) p.81: In Theorem 3.15 (i), (ii), the commas "," should be the periods ".".
- (2) p.82: In the proof of Theorem 3.19, "by the product rule" should be "by Theorem 2.8 (ii)".

Section 3.3.

(1) p.88: In Theorem 3.29, "Every exponential functions" should be "Every exponential function".

Section 3.5.

- (1) p.94: "there exists a $c \in (a, x_0)$ " should be "there exists a $c \in (a, x)$ ".
- (2) p.95: In Case 4 of the proof of Theorem 3.47, it should be pointed out that $A=\infty$ and $B=-\infty$ is impossible.
- (3) p.95: In Exercise 3.49, " $A = \infty$ and $B = \pm \infty$ " should be " $A = \infty$ and $B = \infty$ ".
- (4) p.96: In Example 3.50, " $t = \ln x$ " should be " $x = \ln t$ ".
- (5) p.97: In Exercise 3.56 (ii), "exists" should be "exists in \mathbb{R} ".

Section 3.6.

(1) p.98: In the proof of Theorem 3.57, "f'' exists" should be "h'' exists".

Section 3.7.

- (1) p.101: In Problem 3.3, "a, b > 0" should be " $a \in \mathbb{R}$ and b > 0".
- (2) p.106: In Problem 3.32, "an open interval I" should be "an unbounded interval $I = (a, \infty)$ ".

Chapter 4 Integration

Section 4.1.

(1) p.113: In the proof of Theorem 4.12, " $i=1,2,\ldots,n$ " should be " $k=1,2,\ldots,n$ ".

Section 4.2.

- (1) p.114: In the proof of Lemma 4.18 (i), "Problem 0.13" should be "Problem 0.10" and "E is a bounded subset" should be "E is a nonempty bounded subset".
- (2) p.115: In line 13, ".(the period)" should be added.
- (3) p.118: In Example 4.27, " $\underline{\int}_{-a}^{0}$ " should be " $\underline{\int}_{-a}^{0}$ ".

Section 4.3.

(1) p.119: In the last two lines, " \leq " should be "<" and "<" should be " \leq ".

Section 4.4.

- (1) p.122: In line 5, " $||P|| \le \delta$ " could be " $||P|| < \delta$ ".
- (2) p.126: In line 7, "dt" should be added in an integral.
- (3) p.129: In line 5, the period "." should be removed.

- (4) p.131: In line 1, " $x \in [a, b]$ " should be " $x \in [c, d]$ ". In the second-to-last line, " \leq " could be "<".
- (5) p.132: In line 14, " $\cos x^2$ " should be " $\cos^2 x$ ".

Section 4.5.

- (1) p.134: In line 6, the equality "=" should be inserted.
- (2) p.135: In line 13, " $x \to a$ " should be " $c \to a$ ".
- (3) p.136: In line 6, " $\int_{1}^{\infty} e^{-x} dx = 1$ " should be " $\int_{1}^{\infty} e^{-x} dx = e^{-1}$ ".
- (4) p.137-138: In Example 4.60, " $\Gamma(x)$ exists in $[0,\infty)$ " should be " $\Gamma(x)$ exists in $[0,\infty]$ ". " $2(1-e^{-M/s})$ " should be " $2e^{-M/2}$ ".
- (5) p.138: In Exercise 4.61 (iii), " $2^{n+1}n!$ " should be " $2^{2n}n!$ ".
- (6) p.139: In Example 4.63, "if and if only" should be "if and only if".
- (7) p.139: Exercise 4.66 is quite difficult and should go to the problem section.

Section 4.6.

- (1) p.140: In Problem 4.1 (i), "continuous on $[0,1] \setminus E$ " should be "continuous on $(0,1] \setminus E$ ". Problem 4.2 is quite easy and so should be removed or an exercise.
- (2) p.142: Problem 4.13 should be corrected as follows: If $f:[a,b]\to\mathbb{R}$ is a continuous one-to-one function, prove that

$$\int_{a}^{b} f(x) dx + \int_{f(a)}^{f(b)} f(y) dy = bf(b) - af(a).$$

- (3) p.144: In Problem 4.19, the function g should satisfy the same condition as f.
- (4) p.146: In Problem 4.25, " $0 \le d_{n+1} d_n$ " should be " $0 \le d_n d_{n+1}$ ".

Chapter 5

Section 5.1.

- (1) p.147: The title "Double series" should be "Double Series".
- (2) p.147: In line 6, " $|a_{mn} s| < \varepsilon$ " should be " $|a_{mn} a| < \varepsilon$ ".
- (3) p.149: In Theorem 5.5, " $\{S_k\}_{k=1}^{\infty}$ " should be " $\{S_k\}_{k=0}^{\infty}$ " and " $\bigcup_{k=1}^{\infty} S_k = \mathbb{N}_0^2$ " should be " $\bigcup_{k=0}^{\infty} S_k = \mathbb{N}_0^2$ ". Moreover, italic "(i), (ii)" should be roman "(i), (ii)".

Section 5.5.

(1) p.168: The title "Taylor series" should be "Taylor Series".

Section 5.6.

(1) p.176: In Problem 5.3, an "*" should be added.

Chapter 6

Section 6.2.

- (1) p.187: In the statement of Theorem 6.9, "(Bolzano-Weierstarss)" should be "(Bolzano-Weierstrass)". In the proof of Theorem 6.9, " $\phi_2(\phi_1(k))$ " should be " $\phi_1(\phi_2(k))$ " and " $\phi_n \circ \cdots \circ \phi_1$ " should be " $\phi_1 \circ \cdots \circ \phi_n$ "
- (2) p.189: In Example 6.18, " $1/k \in E$ " should be " $1/k \in E \setminus \{0\}$ ".

Section 6.3.

- (1) p.193: After Exercise 6.41, add "Hint for (iii): Find a sequence $\{\mathbf{y}_k\}$ in E converging to dist (\mathbf{x}, E) , and then apply the Bolzano-Weierstrass theorem.".
- (2) p.193: After Exercise 6.43, add "Hint: For $\mathbf{x} \in \mathbb{R}^n$ and r > 0, let $E_r = \{\mathbf{y} \in \mathbb{R}^n : (x_1 y_1)^2 / a_1^2 + \dots + (x_n y_n)^2 / a_n^2 \le r^2 \}$. Show that if $x_1^2 / a_1^2 + \dots + x_n^2 / a_n^2 = r^2 < 1$, then $E_r(\mathbf{x}) \subset E$.".

Section 6.4.

(1) p.197: In line 12, " $k \in E$ " should be $k \in \mathbb{N}$ ".

Section 6.5.

- (1) p.198: In the paragraph after Exercise 6.56, " $X\subset \mathbb{R}^n$ " should be "X"
- (2) p.199: In the last paragraph of the proof of Theorem 6.66, insert " $X=A\cup B$ " and " $X\subset U\cup V$ ".
- (3) p.199: Exercise 6.61 should be moved to after Example 6.58.
- (4) p.199: In the definition of E in the proof of Theorem 6.62, "[a, b]" should be "(a, b]".
- (5) p.200: In the last paragraph of the proof of Theorem 6.66, insert " $U \cap V = \emptyset$ " and " $A \cap B = \emptyset$ ".

Section 6.6.

- (1) p.202: In Problem 6.1, "Prove that there exists..." should be "Prove that if N is a norm on \mathbb{R}^n , then there exists...".
- (2) p.203: In Problem 6.11, "Then for every..." should be "Prove that for every...".

Chapter 7

Section 7.1.

(1) p.208: In Theorem 7.3, " $\mathbf{a} \in \overline{E}$ " should be " \mathbf{a} is a limit point of E", " $E \setminus \{\mathbf{a}\}$ " should be "E", and " $B_r(\mathbf{a}) \setminus \{\mathbf{a}\}$ " should be " $B_r(\mathbf{a})$ ".

Section 7.3.

- (1) p.213: In Theorem 7.18, " $E \subset \mathbb{R}^n$ is closed" should be " $E \subset \mathbb{R}^n$ is nonempty and closed".
- (2) p.215: " $g'(x^*) 1$ " should be " $1 g'(x^*)$ ".

Section 7.4.

- (1) p.217: For later reference, we need to introduce the zero matrix denoted by $O_{m \times n}$ or simply O.
- (2) p.220: In line 5, Add "(why?)" after "is invertible".

Section 7.5.

(1) p.222: The title "The Weierstrass approximation theorem" should be "The Weierstrass Approximation Theorem".

Section 7.6.

- (1) p.228: In Problem 7.4, "p > 1 and q > 1" should be "p and q are positive numbers with p + q > 2".
- (2) p.230: In Problem 7.14 (i), " $f^{-1}(-\infty, y)$ " should be " $f^{-1}((-\infty, y])$ ".
- (3) p.232: In Problem 7.27 (i), "k" should be "j".
- (4) p.232: In Problem 7.27 (ii), " $|e^{||T||} 1$ |" should be " $e^{||T||}$ ".
- (5) p.233: In Problem 7.27 (iii), " $e^{\mathbf{T}}$ " should be " \mathbf{T} ".
- (6) p.233: In Problem 7.27 (iv), " $e^{\alpha \mathbf{T}}e^{\beta \mathbf{T}}$ " should be " $e^{\alpha \mathbf{T}} \circ e^{\beta \mathbf{T}}$ ".

Chapter 8

Section 8.2.

- (1) p.244: In Exercise 8.17, "the differential **T**" should be "the differential of **T**".
- (2) p.245: In line 12, "f" should be boldfaced " \mathbf{f} ".
- (3) p.246: In Exercise 8.21, "for all $\mathbf{a} \in \mathbb{R}^n$ " should be "for all $\mathbf{h} \in \mathbb{R}^n$ ".

Section 8.3.

(1) p.247: In the end of the proof of Theorem 8.23, "the boldfaced **0**" should be "0".

Section 8.4.

- (1) p.250: In line 9, "f" should be " \mathbf{f} ".
- (2) p.251: In the proof of Theorem 8.32, " $\mathbf{v} = \mathbf{f}(\mathbf{y}) \mathbf{f}(\mathbf{x})$ " should be " $\mathbf{a} = \mathbf{x}$, $\mathbf{b} = \mathbf{y}$, and $\mathbf{v} = \mathbf{f}(\mathbf{y}) \mathbf{f}(\mathbf{x})$ ".

Section 8.5.

(1) p.257: In line 4, " $\mathbf{g} \in C^1(E)$ " should be " $\mathbf{g} \in C^1(E; \mathbb{R}^n)$ ".

Section 8.6.

- (1) p.260: In lines 7 and 13, The period "." should be removed.
- (2) p.261: In line 5, The box " \square " should be moved to the end of the proof.

Section 8.7.

- (1) p.264: In the statement of Theorem 8.55, The letter "s" should be removed from " $g_1(\mathbf{a}) = \cdots = g_m(\mathbf{a}) = 0$ s".
- (2) p.265: In line 15, " $\mathbf{0} = \nabla \phi(\mathbf{t}_0)$ " should be " $O = D\phi(\mathbf{t}_0)$ ", because they are matrices.
- (3) p.265: In line 17, "**0**" should be the matrix "O".

Section 8.8.

- (1) p.266: In Problem 8.4, " $\psi(k\mathbf{x})$ " should be " $\psi\left(\frac{\mathbf{x}}{k}\right)$ ".
- (2) p.267: In Problem 8.6 (iii), "harmonic" should be "is harmonic".
- (3) p.269: In Problem 8.15 (ii), (iii): "Q" should be "P" and " q_i " should be " p_i ".

Chapter 9

Section 9.3.

(1) p.282: The first part of the proof of Theorem 9.24 can be much simplified because the sets S_{δ} and S'_{δ} need not to be introduced.

Section 9.4.

(1) p.288: In Example 9.36, "x" should be "(x, y)".

Section 9.5.

(1) p.291: In line 3, " $d\mathbf{g}(\mathbf{x})$ " should be " $d\mathbf{g}(\mathbf{x};\cdot)$ ".

Section 9.6.

(1) p.298: In line 1, " $\mathbf{g}^{-1} \in C^1(\mathbf{g}(E^\circ; \mathbb{R}^n))$ " should be " $\mathbf{g}^{-1} \in C^1(\mathbf{g}(E^\circ); \mathbb{R}^n)$ ".

Section 9.7.

- (1) p.303: In line 14, " 2^{m+2} " should be " 2^{2m+1} ".
- (2) p.304: In line 6, " $x^2 + y^2$ " should be " $u^2 + v^2$ ".
- (3) p.309: In line 4, "a closed subset" should be "a compact subset". In the end of Example 9.58, we should add the period ".".

Section 9.8.

- (1) p.314: In Problem 9.14 (ii), " 2π " should be " $2\pi\xi$ ".
- (2) p.315: In Problem 9.16 (i), " $\overline{B_k(\mathbf{0})}$ " should be " $\overline{B_{1/k}(\mathbf{0})}$ ".
- (3) p.317: In Problem 9.20 (iii), " $(-2\pi xi)^{\alpha}$ " should be " $(-2\pi i\mathbf{x})^{\alpha}$ ".

HINTS FOR SELECTED PROBLEMS

- (1) p.322: In Hint for Problem 3.13, the power "p" in the right hand side should be "p-1".
- (2) p.324: In Hint for Problem 7.7, " \mathbb{R} " should be " \mathbb{R}^m ".