로그인이
필요합니다

도서를 검색해 주세요.

원하시는 결과가 없으시면 문의 주시거나 다른 검색어를 입력해보세요.

견본신청 문의
단체구매 문의
오탈자 문의

Probability and Random Processes (2006) 요약정보 및 구매

상품 선택옵션 0 개, 추가옵션 0 개

사용후기 0 개
지은이 Krishnan
발행년도 2006-06-26
판수 1판
페이지 723
ISBN 9780471703549
도서상태 구매가능
판매가격 55,000원
포인트 0점
배송비결제 주문시 결제

선택된 옵션

  • Probability and Random Processes (2006)
    +0원
위시리스트

관련상품

  • This survival guide in probability and random processes eliminates the need to pore through several resources to find a certain formula or table. It offers a compendium of most distribution functions used by communication engineers, queuing theory specialists, signal processing engineers, biomedical engineers, physicists, and students.
  • Chapter 1: Sets, Fields, and Events. 1.1 Set Definitions. 1.2 Set Operations. 1.3 Set Algebras, Fields, and Events. Chapter 2: Probability Space and Axioms. 2.1 Probability Space. 2.2 Conditional Probability. 2.3 Independence. 2.4 Total Probability and Bayes' Theorem. Chapter 3: Basic Combinatorics. 3.1 Basic Counting Principles. 3.2 Permutations. 3.3 Combinations. Chapter 4: Discrete Distributions. 4.1 Bernoulli Trials. 4.2 Binomial Distribution. 4.3 Multinomial Distribution. 4.4 Geometric Distribution. 4.5 Negative Binomial Distribution. 4.6 Hypergeometric Distribution. 4.7 Poisson Distribution. 4.8 Logarithmic Distribution. 4.9 Summary of Discrete Distributions. Chapter 5: Random Variables. 5.1 Definition of Random Variables. 5.2 Determination of Distribution and Density Functions. 5.3 Properties of Distribution and Density Functions. 5.4 Distribution Functions from Density Functions. Chapter 6: Continuous Random Variables and Basic Distributions. 6.1 Introduction. 6.2 Uniform Distribution. 6.3 Exponential Distribution. 6.4 Normal or Gaussian Distribution. Chapter 7: Other Continuous Distributions. 7.1 Introduction. 7.2 Triangular Distribution. 7.3 Laplace Distribution. 7.4 Erlang Distribution. 7.5 Gamma Distribution. 7.6 Weibull Distribution. 7.7 Chi-Square Distribution. 7.8 Chi and Other Allied Distributions. 7.9 Student-t Density. 7.10 Snedecor F Distribution. 7.11 Lognormal Distribution. 7.12 Beta Distribution. 7.13 Cauchy Distribution. 7.14 Pareto Distribution. 7.15 Gibbs Distribution. 7.16 Mixed Distributions. 7.17 Summary of Distributions of Continuous Random Variables. Chapter 8: Conditional Densities and Distributions. 8.1 Conditional Distribution and Density for P(A) = 0. 8.2 Conditional Distribution and Density for P(A) ☆ 0. 8.3 Total Probability and Bayes' Theorem for Densities. Chapter 9: Joint Densities and Distributions. 9.1 Joint Discrete Distribution Functions. 9.2 Joint Continuous Distribution Functions 9.3 Bivariate Gaussian Distributions. Chapter 10: Moments and Conditional Moments. 10.1 Expectations. 10.2 Variance. 10.3 Means and Variances of Some Distributions. 10.4 Higher-Order Moments. 10.5 Bivariate Gaussian. Chapter 11: Characteristic Functions and Generating Functions. 11.1 Characteristic Functions. 11.2 Examples of Characteristic Functions. 11.3 Generating Functions. 11.4 Examples of Generating Functions. 11.5 Moment Generating Functions. 11.6 Cumulant Generating Functions. 11.7 Table of Means and Variances. Chapter 12: Functions of a Single Random Variable. 12.1 Random Variable g(X). 12.2 Distribution of Y = g(X ). 12.3 Direct Determination of Density fY (y) from fX(x). 12.4 Inverse Problem: Finding g(x) Given fX(x) and fY (y). 12.5 Moments of a Function of a Random Variable. Chapter 13: Functions of Multiple Random Variables. 13.1 Function of Two Random Variables, Z = g(X,Y ). 13.2 Two Functions of Two Random Variables, Z = g(X,Y ), W = h(X,Y ). 13.3 Direct Determination of Joint Density fZW(z,w ) from fXY(x,y). 13.4 Solving Z = g(X,Y ) Using an Auxiliary Random Variable. 13.5 Multiple Functions of Random Variables. Chapter 14: Inequalities, Convergences, and Limit Theorems. 14.1 Degenerate Random Variables. 14.2 Chebyshev and Allied Inequalities. 14.3 Markov Inequality. 14.4 Chernoff Bound. 14.5 Cauchy쭯Schwartz Inequality. 14.6 Jensen’s Inequality. 14.7 Convergence Concepts. 14.8 Limit Theorems. Chapter 15: Computer Methods for Generating Random Variates. 15.1 Uniform-Distribution Random Variates. 15.2 Histograms. 15.3 Inverse Transformation Techniques. 15.4 Convolution Techniques. 15.5 Acceptance쭯Rejection Techniques. Chapter 16: Elements of Matrix Algebra. 16.1 Basic Theory of Matrices. 16.2 Eigenvalues and Eigenvectors of Matrices. 16.3 Vectors and Matrix Differentiations. 16.4 Block Matrices. Chapter 17: Random Vectors and Mean-Square Estimation. 17.1 Distributions and Densities. 17.2 Moments of Random Vectors. 17.3 Vector Gaussian Random Variables. 17.4 Diagonalization of Covariance Matrices. 17.5 Simultaneous Diagonalization of Covariance Matrices. 17.6 Linear Estimation of Vector Variables. Chapter 18: Estimation Theory. 18.1 Criteria of Estimators. 18.2 Estimation of Random Variables. 18.3 Estimation of Parameters (Point Estimation). 18.4 Interval Estimation (Confidence Intervals). 18.5 Hypothesis Testing (Binary). 18.6 Bayesian Estimation. Chapter 19: Random Processes. 19.1 Basic Definitions. 19.2 Stationary Random Processes. 19.3 Ergodic Processes. 19.4 Estimation of Parameters of Random Processes. 19.5 Power Spectral Density. Chapter 20: Classification of Random Processes. 20.1 Specifications of Random Processes. 20.2 Poisson Process. 20.3 Binomial Process. 20.4 Independent Increment Process. 20.5 Random-Walk Process. 20.6 Gaussian Process. 20.7 Wiener Process (Brownian Motion). 20.8 Markov Process. 20.9 Markov Chain. 20.10 Martingale Process. 20.11 Periodic Random Process. 20.12 Aperiodic Random Process (Karhunen쭯Loeve Expansion). Chapter 21: Random Processes and Linear Systems. 21.1 Review of Linear Systems. 21.2 Random Processes through Linear Systems. 21.3 Linear Filters. 21.4 Bandpass Stationary Random Processes. Chapter 22: Weiner and Kalman Filters. 22.1 Review of Orthogonality Principle. 22.2 Wiener Filtering. 22.3 Discrete Kalman Filter. 22.4 Continuous Kalman Filter. Chapter 23: Probabilistic Methods in Transmission Tomography. 23.1 Introduction. 23.2 Stochastic Model. 23.3 Stochastic Estimation Algorithm. 23.4 Prior Distribution P(M). 23.5 Computer Simulation. 23.6 Results and Conclusions. 23.7 Discussion of Results. 23.8 References for Chapter 23. APPENDIXES. A: A Fourier Transform Tables. B: Cumulative Gaussian Tables. C: Inverse Cumulative Gaussian Tables. D: Inverse Chi-Square Tables. E: Inverse Student-t Tables. F: Cumulative Poisson Distribution. G: Cumulative Binomial Distribution. References.
  • 학습자료


    등록된 학습자료가 없습니다.

    정오표


    등록된 정오표가 없습니다.

  • 상품 정보

    상품 정보 고시

  • 사용후기

    등록된 사용후기

    사용후기가 없습니다.

  • 상품문의

    등록된 상품문의

    상품문의가 없습니다.

  • 배송/교환정보

    배송정보

    cbff54c6728533e938201f4b3f80b6da_1659402509_9472.jpg

    교환/반품 정보

    cbff54c6728533e938201f4b3f80b6da_1659402593_2152.jpg
     

선택된 옵션

  • Probability and Random Processes (2006)
    +0원